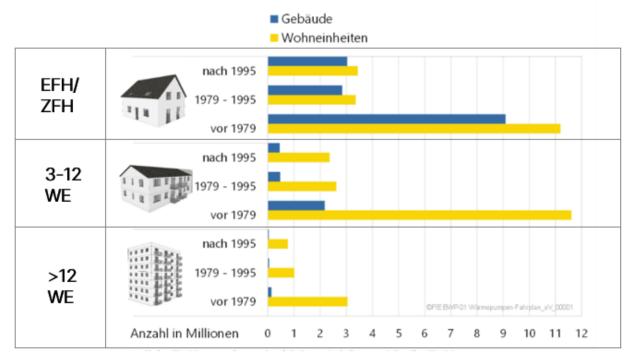


Lösungen für die Wohnungswirtschaft – was heute schon möglich ist

23 Mai 2023


Wie gelingt der Wärmepumpen-Hochlauf in

Mehrfamilienhäusern

Frank Richert - Manager Politik & Verbändeabeit

Trends und Marktentwicklung

Struktur Bestand DE

Forschungsstelle für Energiewirtschaft FFE (2021)

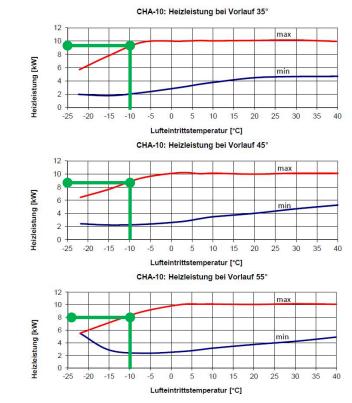
Bestand in DE:

- EFH/ZFH und bis 12 WE sehr häufig
- Größte Anzahl Gebäude und WE
- Größte CO2-Einsparung möglich
- Fast immer mit Gas und Öl beheizt

Konsequenzen für die Wärmepumpe:

- Hohe Vorlauftemperaturen
- Hohe Effizienz
- Schallemissionen niedrig
- CO2-Equivalent Kältemittel so gering wie möglich

→ Hybridsysteme in Zukunft relevant


- speziell in der Sanierung

Warum eine Wärmepumpe in jedes Haus passt......

Moderne Komponenten und technisches know-how ermöglichen weite Einsatzgebiete

Durch konstant verlaufende Heizkennlinien und einen "großen" Modulationsbereich kann ein Takten bei wärmeren Außentemperaturen verhindert und bis in tiefe Minusgrade ohne E-Stab geheizt werden

Anleitungen und Dokumente

Neue Darstellungsform der Heizleistungskurven

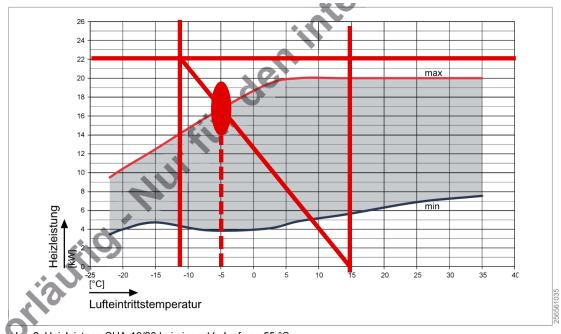
Abb. 4: Heizleistung CHA-16/20 bei einem Vorlauf von 35 °C

– Hier am Beispiel der CHA-16/20:

- Max. Linie rot (bei -7°C=16kW bei +7°C=20kW)
- Min. Linie blau
- Raum dazwischen (Modulationsbereich) grau

Klima-Daten 10115 Berlin

Generiert am: 09.06.2022


Stunden für Lufttemperaturen in Postleitgebiet 10115 basierend auf der nächstliegenden Messstation in Berlin-Tempelhof. Dieser Graph ist auf Basis von 279532 Messungen zwischen 01.01.1981 und 04.01.2022 generiert worden. Quelle: Deutscher Wetterdienst

Anteil AT -11,1 °C und kleiner liegt bei 30,3 Stunden pro Jahr

Anleitungen und Dokumente

Auslegung am Beispiel der CHA-16/20

. 6: Heizleistung CHA-16/20 bei einem Vorlauf von 55 °C

PLZ: 10115 Berlin

Max. VL-Temperatur: 55°C

- Heizlast: 22 kW

Heizgrenztemperatur: 15°C

Normaußentemperatur: -11,1°C (10,4 STD/Jahr)

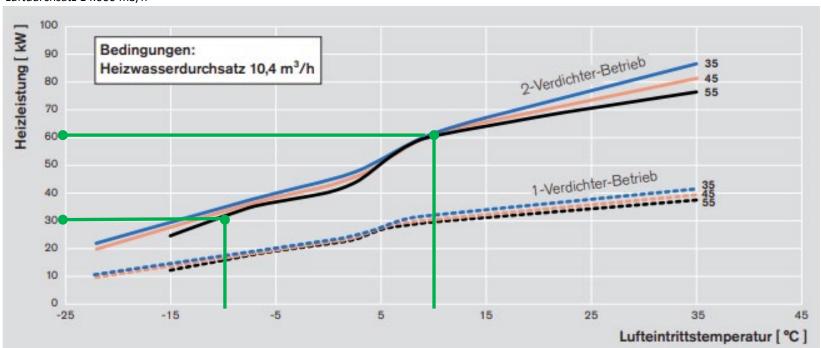
Ermittelter BP: -5,0°C

-5°C und kälter an 232 STD/a

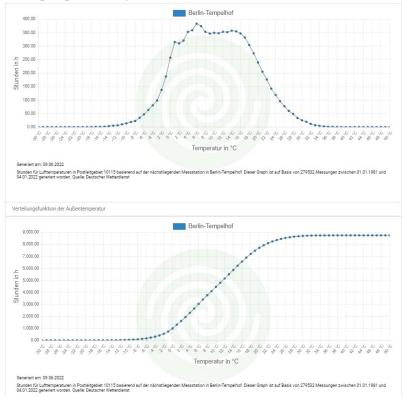
- Bei 6.227 STD/a Heizarbeit

- 96,2% ganzjähriger Deckungsanteil durch WP

Modulation von +9°C bis -5,0°C


 Ab 9°C AT geht die WP aus und startet nach Bedarf wieder. Selbst die geringste Leistung ist nun deutlich zu hoch.

- speziell in der Sanierung


Luftwärmepumpen im großen Leistungsbereich

- Hier ein typischer Verlauf einer 60 KW LWP, 2,3 Meter hoch, 1,9 Meter breit
- + Schallpegel 74 dB(A) in 10 Metern 50 dB(A)
- + Luftdurchsatz 14.000 m3/h

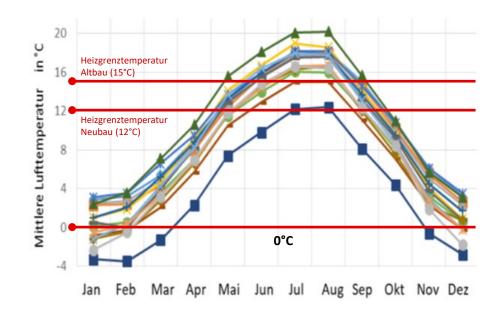
Anleitungen und Dokumente

Auslegung am Beispiel der CHA-16/20

Genauere Betrachtung der PLZ: 10115

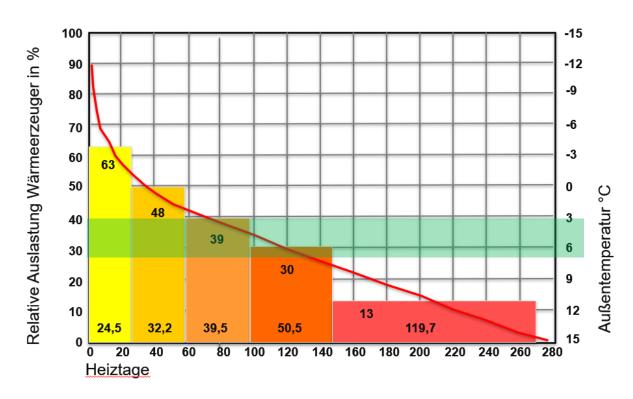
- -11°C und kälter an nur 30 Std. je Jahr
- -5°C und kälter an nur 232 Std. je Jahr
- 0°C und kälter an 994 Std. je Jahr
- +7°C und kälter an 3.411 Std. je Jahr
- +15°C und kälter an 6.227 Std. je Jahr

Na? Richtig beurteilt??



Planung und Dimensionierung einer hocheffizienten Wärmepumpenanlage - speziell in der Sanierung

Voraussetzungen für den effizienten Einsatz einer Wärmepumpe - speziell in der Sanierung


90% der Heizperiode findet über Null-Grad statt

- + Je höher die Lufttemperatur, desto besser die Effizienz
- + Minusgrade sind eher selten

Mögliche Lösungen mit Luft-Wärmepumpe?

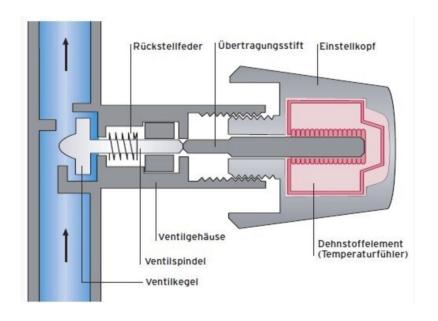
Relative Heizkesselauslastung zur Außentemperatur

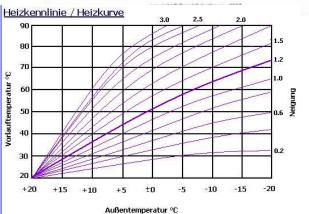
Auslegung und Leistung

→ viel Leistung für wenige Tage, wenig
Leistung für viele Tage

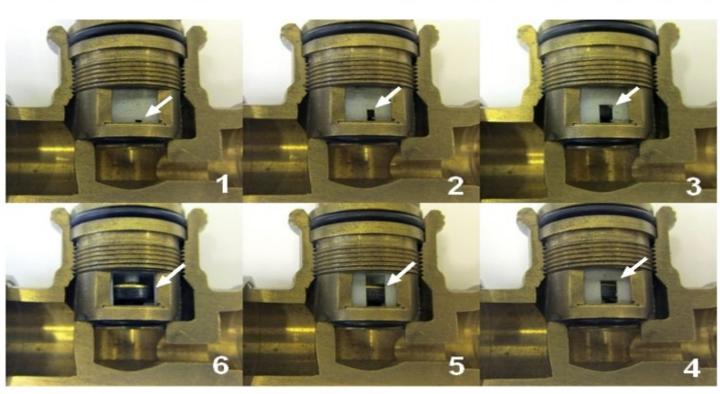
- speziell in der Sanierung

	Sanierung H	eizun	gsanlag	e - neı	ue Heizf	lächen	auswal	hl															
A	luslegungstempe	erature	ı Auße	entempe	ratur	Altes Sy	stem:	Flachheizkörper Neue Heizflächenauswahl manuell? oder automatisch															
_	alt	neu	θ _e	-10	°C	Neues S	ystem:	Flachhe	izkörper F	abrikat	Buderus	Тур	Logatren	d C-Plan			Wenn au	enn automatisch: nur innerhalb der eingegebenen BT?					
θ_{VL}	70 °C	55	°C	Verring	erung Diffe	renz θ _{VL} -	- θ _{RL} um	20	%, darau	s ergibt s	ich eine z	ul. Rückla	uftempera	atur von 6	RL =	47 °C		aud	ch Verläng	erung der	eingegeb	enen BL?	✓
$\theta_{RL,ausleg}$	55 °C	45	°C			Vo	orhanden	es Syste	m: Flach	heizkörp	er				Ne	ues Syst	em: Flac	hheizkö	rper	_	Neu	e Ausleg	jung
					Einbae	daten			70/55 °C			55/45 °C			Einba	edaten			55/45 °C			lst-Werte	,
Raum	Raum	θί	$\Phi_{\text{HL,ausleg}}$	BH	Тур	BL	BT	Фнк	θ _{RL,ist,alt}	m _{soll,alt}	Фнк	θ _{RL,ist,neu}	m _{soll,neu}	BH	Тур	BL	BT	Фнк	θ _{RL,ist,neu}	m _{soll,neu}	Faktor f	Φ_{HK}	$\theta_{i,ist}$
Nr.	Bezeichnung	°C	W	mm		mm	mm	W	°C	kg/h	W	°C	kg/h	mm		mm	mm	W	°C	kg/h	-	W	°C
1	SZ	20	720	600	Typ 22	1200	192	1.625	27,6	14,6	1.035	33,4	28,6	600	Typ 22	1000	192	862	38,5	37,5	0,84	720	20
2	WZ	20	970	400	→ yp 22	1800	192	1.764	31,9	21,9	1.123	39,6	54,1	400	Typ 22	1600	192	999	43,8	74,8	0,97	970	20
3	Ki1	20	730	600	Typ 22	1200	192	1.625	27,8	14,9	1.035	33,7	29,5	600	Typ 22	1000	192	862	38,9	39,1	0,85	730	20
4	Ki2	20	730	600	Typ 22	1200	192	1.625	27,8	14,9	1.035	33,7	29,5	600	Typ 22	1000	192	862	38,9	39,1	0,85	730	20
5	EZ	20	600	900	Typ 22	600	192	1.144	30,8	13,2	729	38,0	30,4	900	Typ 22	600	192	729	38,9	32,9	0,85	616	21
6	KÜ	20	600	600	Typ 22	800	192	1.083	32,1	13,6	690	39,8	34,0	600	Typ 22	800	192	690	39,8	34,0	0,87	600	20
7	BZ	24	500	600	Тур 33	500	157	847	36,0	12,7	509	44,4	40,6	600	Typ 33	500	157	509	44,4	40,6	0,98	500	24
8																							
9																							
10			•	••••••						105,7										297,9			


Planung und Dimensionierung einer hocheffizienten Wärmepumpenanlage - speziell in der Sanierung


Abbildung 1: Bauteile eines Thermostatventils

- Die Hydraulik im Bestand



- Die Hydraulik im Bestand

- Die Hydraulik im Bestand

Heizkörper Leistungsberechnung

Pos	Anz	Raumbezeichnung	Leistung geplant		Leistung genutzt		Massen Strom	Temp erreicht
1	1	3: Büro 2.OG (865W)	865	783	820	39.4	126	18
2	1	1: Wohnzimmer 2.0G (1223W)	1223	1278	1223	36.75	127	20
3	1	2: Schlafzimmer 2.0G (968W)	968	788	825	39.4	127	16
4	1	6: Bad 2.OG (378W)	378	735	378	25.39	17	20
5	1	4: Dachboden 3. (605W)	605	965	605	27.95	31	20

Heizkörper hydraulischer Abgleich

Pos	Anz	Raumbezeichnung	Massen Strom	Strang Druck	System Druck	Ventil Druck	Ventil Einstellw	Ventil Öffnung
1	1	3: Büro 2.OG (865W)	126	10.27	16.86	23.14	11.1	74
2	1	1: Wohnzimmer 2.0G (1223W)	127	10.43	17.02	22.98	12.1	81
3	1	2: Schlafzimmer 2.0G (968W)	127	10.43	17.02	22.98	11.2	75
4	1	6: Bad 2.OG (378W)	17	0.19	6.78	33.22	1.2	8
5	1	4: Dachboden 3. (605W)	31	0.62	7.21	32.79	3.4	23

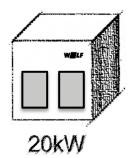
- Die Hydraulik im Bestand

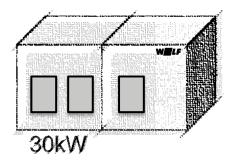
	Badezimmer	25.64 °C / 20 °C		526 W / 268 W
	Туре 33	600/500/157 (H/B/T)	Mittleres Drittel	AUSTAUSCHEN
				NEUEN HEIZKÖRPER HINZUFÜGEN
(!)	Flur	20 °C / 20 °C		- / 322 W
				NEUEN HEIZKÖRPER HINZUFÜGEN
(!)	Schlafzimmer	18.82 °C / 20 °C		1032 W / 1094 W
	Type 22	600/1400/105 (H/B/T)	Mittleres Drittel	AUSTAUSCHEN
				NEUEN HEIZKÖRPER HINZUFÜGEN
(!)	Wohnzimmer	11.1 °C/ 20 °C		1227 W / 1777 W
	Type 22	400/2300/105 (H/B/T)	Mittleres Drittel	AUSTAUSCHEN
				NEUEN HEIZKÖRPER HINZUFÜGEN
	Kinder-/Gästezimmer	22.36 °C / 20 °C		1032 W / 820 W

Industrielle Vorfertigung

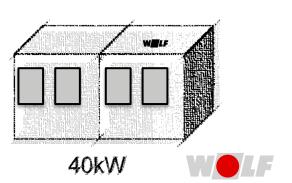
Komfortable Wartung

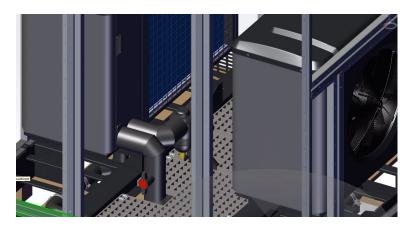
Variable Aufstellmöglichkeiten

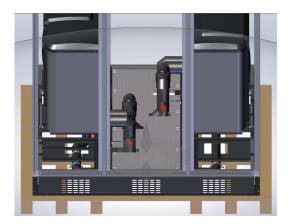

Schutz vor Vandalismus

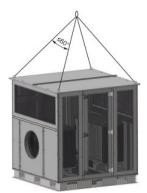


Kostenreduzierung durch weniger Gewerke und einfaches Handling









Bauteile an der Decke

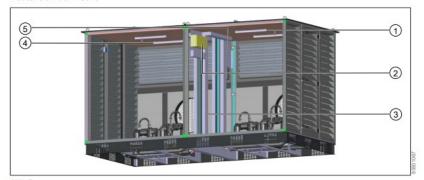
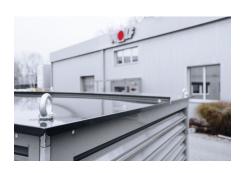
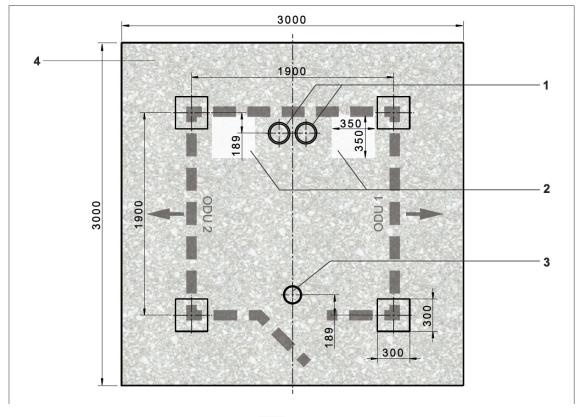


Abb. 5


- ① Beleuchtung (ODU 1 / ODU 2)
- ③ Installationskanäle für elektrischen Anschluss
- (5) Klemmkasten 2 (ODU 3 / ODU 4)

- ② Klemmkasten 1 (ODU 1 / ODU 2)
- Beleuchtung (ODU 4 / ODU 5)



Vorbereiteter Standort

Wie bei jedem guten Projektstart ist ein Fundament-Plan erforderlich

Tab. 4.2 Anforderungen an das Fundament

Projektumsetzung:Fundamentplanin der Theorie

Vorbereiteter Standort

Erdarbeiten sowie hydraulische Verbindungsleitung / Elektroleitungen stehen bereits auf "Standby"

20kW oder 40kW auf Palette 850kg oder 1050kg

Nachhaltige Heizungstechnik "Made in Germany"

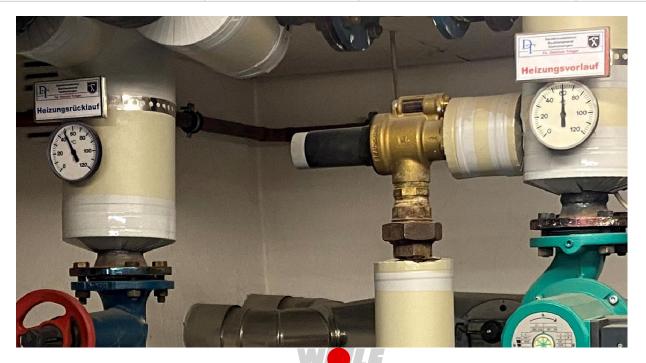
Projekt im Überblick

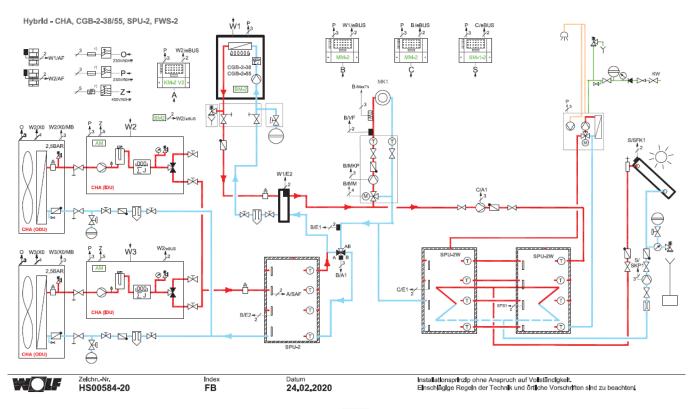
- Bestandsgebäude 1958
 - Sanierung 1993
 - Anlagentechnik 1993
- WOLF Hybridlösung
 - 2 x Luft/ Wasser-Wärmepumpe CHA-Monoblock 10 KW
 - 1 x Gas-Brennwert-Therme CGB-2-55
 - 12 x Hochleistungs-Flachkollektoren TopSon

Ausgangssituation

Referenz Wohnungsgesellschaft XXXXau GmbHAusgangssituation

Ausgangssituation




Ausgangssituation – Temperaturen & Energieverbrauch

Menge alt lt. Abrechnung		110.457 kWh	
WW Anteil	25%		27.614 kWh

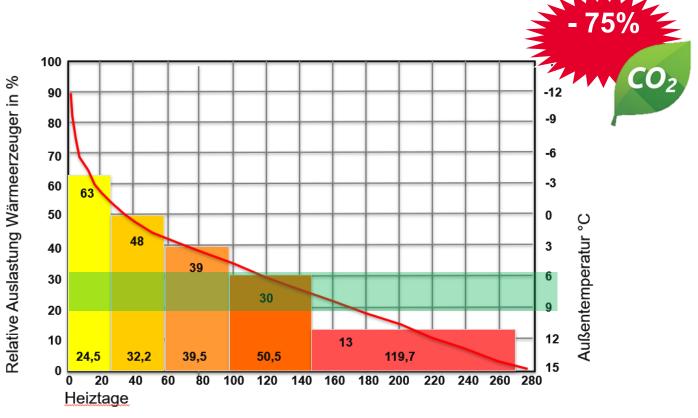
Referenz Wohnungsgesellschaft XXXXau GmbH Was haben wir gemacht?

Luft/ Wasser-Wärmepumpe CHA-Monoblock & Solarthermie



Luft/ Wasser-Wärmepumpe CHA-Monoblock & Solarthermie

Gas-Brennwert-Therme CGB-2-55 in Kombination mit der CHA Wärmepumpen-Kaskade


Gas-Brennwert-Therme CGB-2-55

Verkaufspreis Simulation						26,51 t CO ²
			Bezugskosten			
Arbeitszahl			4 JAZ	Kosten	Umsatz	
davon WP	80%	39.765 kWh	9.941 kWh	#####		9,54 t CO ²
davon Gas	20%	9.941 kWh				2,39 t CO ²
Verkauf Gas WW		16.244 kWh				3,90 t CO ²
Verkauf Solar WW		11.370 kWh				2,73 t CO ²
Verkauf Photovoltaik				#####	#####	
Abschreibung	15 Jahre			#####		
Zwischensummen		77.320 kWh				
Ersparnis beim Kunden		33.137 kWh				
Flatrat					0€	
Summen		110.457 kWh		####	#####	18,56 t CO ²
Gewinn					#####	
Anteil Gas		26.185 kWh			#####	6,28 t CO ²
Anteil regenerativ		51.135 kWh				12,27 t CO ²

Die Wärmepumpe passt in jedes Haus

Disclaimer // Die vorliegende Präsentation ist vom jeweiligen Verfasser durch das Urheberrecht geschützt. Nachdruck, Vervielfältigung, Weiterbearbeitung – auch auszugsweise – und / oder Weiterleitung an Dritte ist urheberrechtlich nicht gestattet. Obwohl die Präsentation mit größter Sorgfalt erstellt wurde, besteht kein Anspruch auf sachliche Richtigkeit, Vollständigkeit und/oder Aktualität.

