EHPA Testing Regulation

Testing of Exhaust air /Water Heat Pumps

Terms, Test Conditions and Test Methods based on EN 14825, EN 14511-1 to 4 and EN 12102

Additional requirements for granting the international quality label for heat pumps

Version 1.0
Release 01.04.2016

© European Heat Pump Association
Rue d’Arlon 63-67 | B-1040 Brussels | www.ehpa.org
phone +32 24 00 10 17 | fax +32 24 00 10 18 | info@ehpa.org
Revisions of the document

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Main changes</th>
<th>Clause</th>
<th>Page</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>April 1st, 2016</td>
<td>Initial version</td>
<td>-</td>
<td>-</td>
<td>M. Mondot</td>
</tr>
</tbody>
</table>
Contents

1 INTRODUCTION .. 4

2 SCOPE OF THE REGULATION .. 4

3 REFERENCE DOCUMENTS .. 4

4 TERMS AND DEFINITIONS .. 5

5 PERFORMANCE DATA TO BE DECLARED BY THE MANUFACTURER .. 5

6 TESTS TO BE PERFORMED ... 6
 6.1 Performance tests .. 6
 6.2 Seasonal performance tests and SCOP calculation .. 6
 6.2.1 Declared capacity and COP ... 6
 6.2.2 Electric power consumptions ... 7
 6.2.3 Determination of the degradation coefficient ... 7
 6.2.4 SCOP calculations .. 7
 6.3 Test methods .. 7
 6.3.1 Refrigerant charge ... 7
 6.3.2 Fixed capacity units ... 8
 6.3.3 Variable and staged capacity units ... 8
 6.4 Tolerances on performance data .. 8
 6.4.1 Performance data ... 8
 6.4.2 Seasonal performance data ... 8
 6.4.3 SCOPon and SCOP calculations .. 8
 6.5 Sound power level measurement .. 8
 6.6 Testing the operating range .. 9
 6.6.1 Test conditions ... 9
 6.6.2 Test sequence ... 10
 6.7 Safety tests ... 10

7 TEST REPORT LEVEL 1 (DISCLOSURE STATUS: PRIVATE) .. 10
 7.1 General Information on the testing institute .. 10
 7.2 Technical datasheet ... 11
 7.3 Performance tests ... 11
 7.4 Sound power level measurement ... 11
 7.5 Operating range and safety tests ... 11

8 MARKING .. 11
1 Introduction

This regulation specifies the terms and definitions, the test conditions, the performance tests and other requirements for granting the EHPA Quality Label to exhaust air-to-water heat pumps for space heating.

The test conditions and testing methods and requirements described in this regulation are based on the European standards EN 12102, EN 14825 and EN 14511 - Parts 1 to 4 and on additional specifications referenced herein. Anything not defined in this test regulation shall be considered regarding EN 14825, EN 14511 and EN 12102.

A heat pump can be awarded with the International Heat Pump Quality Label once it is successfully tested in accordance with this regulation. The process is described in the “EHPA regulations for granting the international quality label for electrically driven heat pumps”.

This regulation has been adopted by the EHPA Quality Label Committee. Any changes to them must be approved by the Committee.

2 Scope of the regulation

This regulation applies to the testing of factory–made electrically driven exhaust air-to-water heat pumps for space heating.

Note: The test regulation does not apply to units using a mixture of exhaust air and outdoor air as heat source.

In order to qualify for the EHPA Quality Label, the heat pump submitted for testing must be from series production.

3 Reference documents

The latest edition of the reference standards (including any amendments) applies.

EN 14825: 2013
Air conditioners, liquid chilling packages and heat pumps, with electrically driven compressors, for space heating and cooling - Testing and rating at part load conditions and calculation of seasonal performance

EN 14511: 2013
Air conditioners, liquid chilling packages and heat pumps with electrically driven compressors for space heating and cooling
Part 1: Terms and definitions
Part 2: Test conditions
Part 3: Test method
Part 4: Requirements

EN 12102: 2013
Air conditioners, heat pumps and dehumidifiers with electrically driven compressors – Measurement of airborne noise – Determination of the sound power level

EN ISO 5136: 2009
Acoustics – Determination of sound power radiated into a duct by fans and other air-moving devices – In-duct method
4 Terms and definitions

The terms and definitions given in EN 14825, EN 14511-1 and EN 12102 apply.

5 Performance data to be declared by the manufacturer

When applying for the EHPA Quality label for exhaust air-to-water heat pumps, the manufacturer shall provide the performance data for the climates as described in the Ecodesign and Energy Labelling regulations i.e.,
- Average, colder and warmer,
- Average and warmer.

The performance data to be declared on the application form are as follows:

1. Temperature application: low-temperature and/or medium temperature
2. Fixed water flow / variable water flow
3. Fixed outlet temperature / variable outlet temperature
4. Electric power consumptions in other modes than active mode: \(P_{OFF} \), \(P_{SB} \), \(P_{TO} \) and \(P_{CK} \)
5. Per Climate
 a. \(P_{\text{design h}} \) at \(T_{\text{design h}} \)
 b. Bivalent temperature, \(T_{\text{bivalent}} \), where applicable
 c. Type of backup heater: electric or fossil fuel, where applicable
 d. Performance data for test conditions A to F according to Table 1
 e. SCOP\(_{on}\) and SCOP

Table 1 – Performance data for each climate / temperature application to be declared by the manufacturer

<table>
<thead>
<tr>
<th>Test condition</th>
<th>Climate Outdoor temperature °C (^1)</th>
<th>Heat source dry bulb (wet bulb) temperature °C</th>
<th>Outlet water temperature °C</th>
<th>Declared capacity DC (kW)</th>
<th>Declared COP</th>
<th>COP(_d)</th>
<th>Degradation coefficient C(_{dh}) (^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-7</td>
<td>20(12)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>20(12)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>7</td>
<td>20(12)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>12</td>
<td>20(12)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>(T_{\text{design h}})</td>
<td>20(12)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>(T_{\text{bivalent}})</td>
<td>20(12)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For the different climates please refer to Tables 12 to 14 for low temperature application and to Tables 18 to 20 for medium temperature application in EN 14825:2013.

\(^1\) The outdoor temperature is defining the part load ratio to be used for the corresponding test condition

\(^2\) where applicable, because of On/Off capacity cycling
6 Tests to be performed

To be granted the heat pump shall perform the following tests:

a) Performance tests (see chapter 6.1)
b) Seasonal performance tests and SCOP calculations (see chapter 6.2),
c) Acoustic test (see chapter 6.5)
d) Testing operating range (see chapter 6.6)

d) Safety tests (see chapter 6.7).

6.1 Performance tests

Performance tests shall be made in accordance with EN 14511 for the determination of the heating capacity and COP at the test conditions given in Table 2.

<table>
<thead>
<tr>
<th>Temperature application</th>
<th>N°</th>
<th>Test condition</th>
<th>Heat source</th>
<th>Heat sink</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Inlet dry bulb temperature (°C)</td>
<td>Inlet wet bulb temperature (°C)</td>
</tr>
<tr>
<td>Low temperature</td>
<td>1</td>
<td>EA20/W35</td>
<td>20</td>
<td>12</td>
</tr>
<tr>
<td>Medium temperature</td>
<td>2</td>
<td>EA20/W55</td>
<td>20</td>
<td>12</td>
</tr>
</tbody>
</table>

Performance test n°1 is required for fulfilling the minimum COP requirement of the EHPA Quality Label.

Performance test n°1 is required to determine the water flow rate of units with fixed flow rate to be used for seasonal performance tests at low temperature application.

Performance test n°2 is required to determine the water flow rate of units with fixed flow rate to be used for seasonal performance tests at medium temperature application, where applicable.

6.2 Seasonal performance tests and SCOP calculation

6.2.1 Declared capacity and COP

6.2.1.1 Average climate – One temperature application

The seasonal performance tests shall be performed in all the A to F conditions, where applicable, as specified in Table 1 and in accordance with EN 14825 (EN 14825:2016 - Tables 8 and 10).

6.2.1.2 Average climate – Other temperature application

If the manufacturer declares the heat pump space heater to operate at both low-temperature and medium temperature application, then additional tests shall be performed on a random basis for the second temperature application.

The tests shall include:

1) Performance tests according to Table 2, to determine the water flow rate where applicable
2) Test at T_{bivalent}, where applicable
3) Randomly selected by the test centre: one additional test conditions among A, B, C, D and T_{designh} from Table 1 and different from T_{bivalent}, or two test conditions if no T_{bivalent}
If the measured capacity at T_{bivalent} is not fulfilling the tolerances given in 7.4.2, then it is considered that the declared data P_{designh} and T_{bivalent} are not consistent and the tests are stopped.

6.2.1.3 Warmer climate – same temperature application as for average climate

The manufacturer shall declare performance data, SCOP_{on} and SCOP for warmer climate, and additional tests are performed on a random basis to grant the label for this climate, as follows:

Randomly selected by the test centre: one test conditions among A to F from Table 1 and in accordance with EN 14825 (EN 14825:2016 - Tables 8 and 10).

6.2.1.4 Colder climate – same temperature application as for average climate

If the manufacturer declares perform data, SCOP_{on} and SCOP for colder climate, additional tests are performed on a random basis to grant the label for this climate, as follows:

1) Randomly selected by the test centre: One test conditions among T_{bivalent} and T_{designh}
2) Randomly selected by the test centre: One additional test conditions among A to F from Table 1, in accordance with EN 14825 (EN 14825:2016 (Tables 8 and 10)

If the measured capacity at T_{bivalent} is not fulfilling the tolerances given in 7.4.2, then it is considered that the declared data P_{designh} and T_{bivalent} are not consistent and the tests are stopped.

6.2.2 Electric power consumptions

For average climate, the following electric power consumptions shall be measured according to EN 14825:

- electric power consumption during thermostat off mode, P_{TO}
- electric power consumption during standby mode, P_{SB}
- electric power consumption during crankcase heater mode, P_{CK}
- electric power consumption during off mode, P_{OFF}

6.2.3 Determination of the degradation coefficient

If the manufacturer declares a degradation coefficient different form the default value $C_{\text{dh}}= 0.9$ the degradation coefficient shall be determined according EN 14825.

6.2.4 SCOP calculations

The heat pump being granted on the basis of the SCOP values, the test centre shall calculate the SCOP_{on} and SCOP for the average climate and for the warmer/colder climate where appropriate and report it (or them).

Calculations shall be made by using EHPA Excel tool, based on the calculation methodology as described in EN 14825.

6.3 Test methods

Testing shall be made according to EN 14825 and EN 14511-3 with the additional following requirements:

6.3.1 Refrigerant charge

Prefilled units in factory can be delivered as produced, if no additional refrigerant charge is required for testing installation. This is valid only if the factory has a control procedure for the refrigerant charging.

If the heat pump is delivered filled with nitrogen and shall be charged with refrigerant by the test laboratory, then the refrigerant type and charge shall be as specified in the technical data (nameplate or technical documentation) provided by the manufacturer.
6.3.2 Fixed capacity units

For fixed capacity units, the thermostat temperature shall be set at the highest value to force the unit to operate continuously, except in case of cycling tests for the determination of the degradation coefficient.

6.3.3 Variable and staged capacity units

For variable and staged capacity units, the setting of the controls (stage, frequency of the compressor,) shall be done for each test condition as specified by the manufacturer.

6.4 Tolerances on performance data

6.4.1 Performance data

The declared performance data, as specified in Table 2, shall be considered valid if the values are not deviating by more than +5% from the measured capacity and COP values.

In case of larger deviations, the measurements for SCOP calculation are not performed.

6.4.2 Seasonal performance data

For the conditions A to F from Table 1 to be tested, the declared capacities and COP shall not differ by more than +8% from the measured values.

For climates and/or temperature application for which only random tests are performed, all declared performance data shall be considered valid if the above requirement is fulfilled.

6.4.3 SCOP\textsubscript{on} and SCOP calculations

Declared SCOP\textsubscript{on} and SCOP values for any climate and/or temperature application shall not deviate by more than 8% from the calculated values.

6.5 Sound power level measurement

Measurement of the sound power level of the heat pump shall be performed according to the European standard EN 12102-1, using Class A method, at the highest temperature application for which the unit shall be granted.

For the sound power level at the duct outlet, the EN ISO 5236 can also be used.

The following sound power levels shall be measured, according to Figure 1:

1) \(L_{W}\) sound power level radiated by the casing (indoors)
2) \(L_{Wo}\) sound power level at the duct outlet (outdoors)
3) \(L_{Wi}\) sound power level at the inlet of the unit (indoors)
6.6 Testing the operating range

The operating range defined by a maximum of 6 boundary conditions shall be declared by the manufacturer.

Figure 2 provides an example of an operating range declared by the manufacturer.

![Operating range diagram](image)

Figure 2 : Example of operating range defined by the manufacturer

The tests at the boundary limits are intended to show whether the heat pump is fully functional and operable in the warranted operating range stated by the manufacturer.

6.6.1 Test conditions

For checking the operating range, two boundary test conditions are defined, including the test conditions specified in EN 14511-4 clause 4.2.1, as specified in Table 3:

<table>
<thead>
<tr>
<th>Test condition n°</th>
<th>Exhaust air temperature at the outdoor heat exchanger</th>
<th>Outlet water temperature at the indoor heat exchanger</th>
<th>Water flow rate at the indoor heat exchanger</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20°C</td>
<td>Upper limit</td>
<td>Max.</td>
</tr>
<tr>
<td>2</td>
<td>20°C</td>
<td>Lower limit</td>
<td>Min.</td>
</tr>
</tbody>
</table>
Minimum and maximum water flow rates shall be declared by the manufacturer, accordingly with EN 14511-4 clause 6.4.
Test shall be conducted at nominal voltage.

6.6.2 Test sequence

For the boundary test condition n°2, the heat pump shall start and remain in operation for at least 30 minutes without external interference and without being shut off by a safety device.

For the boundary test condition n°1, the heat pump shall start and remain in operation for at least 60 minutes without external interference and without being shut off by a safety device.

During the tests, the permissible deviations as stated in EN 14511-4 clause 4.2.1 apply.

There shall be no damage to the heat pump throughout the entire test.

6.7 Safety tests

The safety tests check if the safety devices respond correctly to operational malfunctions and protect the heat pump from damage.

The safety devices are tested by simulating operational malfunctions during normal heat pump operation, as follows:

1) Shutting off the heat transfer medium flows (see EN 14511-4 clause 4.4)
2) Complete power supply failure (see EN 14511-4 clause 4.5).

Test conditions for low temperature applications, as specified in Table 1, shall be used for the safety tests.

Safety tests shall be performed in accordance with EN 14511-4 procedures given in Clause 4.4 and 4.5.

7 Test report Level 1 (disclosure status: private)

Production of this test report by the heat pump test centre is part of the overall test procedure. The report is sent only to the manufacturer or the customer who has ordered the tests.

The heat pump test centre is allowed to publish the test results only if the applicant has approved such publication with an authorized signature.

This test report level 1 shall specify the version of the testing regulation and of the related standards that have been applied.
It shall contain all test documents and fulfil the requirements in EN 14511-3, EN 14825 and EN 12102.

7.1 General Information on the testing institute

- Date
- Name of the testing institute
- Test location
- Test supervisor
- Test number
- References for properties of fluids
- Test methods and reference to EN standards
- References to the EHPA regulation and version
7.2 **Technical datasheet**

- Name of the customer (usually the manufacturer)
- Machine type, designation
- Serial number (if not available, compressor serial number)
- Brief description of the design
- Information on the components, such as compressor type, heat exchanger type, expansion valve type, etc.
- Year of production
- Photos of the machine
- Dimensions and weight of the heat pump
- Type and charge of refrigerant:
 - GWP value of the refrigerant (as required by the EU Ecolabel, 2007/742/EC)

7.3 **Performance tests**

The report shall include a description of the heat pump tested including all settings, such as thermostat, fan and pump speeds and capacity control settings where applicable. It shall include all data recorded as specified in EN 14511-3 Table 6, and EN 14825 for the different test conditions given in Tables 1 and 2, where applicable.

7.4 **Sound power level measurement**

- Specific requirements for installation of the tested model(s), where applicable
- Acoustic test method
- Measured sound power level(s)

7.5 **Operating range and safety tests**

- Operating range tests passed or failed
- Safety tests passed or failed

8 **Marking**

Each heat pump shall have a durable, permanently fixed marking that is easily readable when the unit is in position for use, bearing at least the information required by the safety standards.

The nameplate shall include the following information:

- Manufacturer or supplier
- Model designation and serial number
- Type and filling weight of the refrigerant

As heating capacities and COPs are dependant of the test conditions and of the different possible matching of the two parts of a split unit, these performances shall be indicated in the technical documentation of the manufacturer.